第5章 机器人和仿生人(第2/3页)
现在我们还不能让蜜蜂大小的机器人做很多事情,大自然比我们要伟大得多。但是,你可以想象出巴掌大的小玩意儿跑来跑去把东西分门别类地放好的情景。它们的任务也许很简单,比如把洗碗液倒入洗碗机,把洗衣粉倒入洗衣机,把咖啡豆放进咖啡机。它们没有其他功能,仅有的功能也不需要太多的智能。但如果这些小器械齐心协力,许多不同的小功能组合在一起肯定比单一的人形机器人更高效。
你也许会质疑在家里放一堆中小型机器人的可行性,应该把它们放哪儿啊?当然,这样的机器人可能更适用于大一些的空间,比如办公场所。然而,这些机器人可以高效地自行归位,也不会比一个人形机器人占用更多的空间。事实上,所有节省劳力的设备都会占用一定的空间,我们要想办法更好地收纳它们。比如,把墙脚线改成一排机器人存放架,或者把动画片《猫和老鼠》的鼠洞更改为更适合放机器人的地方。
长远来看,如果我们能把小型机器人进一步压缩成蜜蜂甚至是蚂蚁的大小,收纳就更不成问题了,因为超级小的机器人可以爬到很小的瓶子里,不会占用太多空间。这样的小型机器人可能需要生物工程技术,比如制造仿生蜜蜂,而不是机械设备。如果要在这个想法上再进一步,也许我们要考虑一下纳米技术。
纳米技术非常精细,相当于在纳米级别上制造物体,一纳米等于一米的十亿分之一,或者一英寸[1]的五百万分之一。科幻作品中描绘的纳米技术大多是邪恶的、有摧枯拉朽的力量的、超级精密的器件,小到肉眼不可见,但这些器件聚在一起便会形成所谓的“灰色黏质”——纳米机器像洪水一样铺天盖地而来,势不可当地摧毁包括人和导弹在内的一切东西。在迈克尔·克莱顿的小说《猎物》(Prey)中,失控的纳米机器人吞噬了一切。但是,我们怎么从现有的技术过渡到纳米级别的机器人呢?答案是利用超级小的颗粒,就像肉眼不可见的超级小的二氧化钛颗粒可以被用作透明的防晒霜一样。这其中的很多争议都聚焦在金·埃里克·德雷克斯勒身上。
德雷克斯勒于1986年出版了《创造的发动机》(Engines of Creation)一书,他在书中提出了“分子工程”的概念,即数以亿计的小零件组合成单独的“分子”或者物质单元,再用这些分子组装任何东西。坦率地说,德雷克斯勒的这本书是没有故事情节的科幻作品,不仅因为我们现在的科技水平和他提出的概念依然差距很大,而且因为这个想法基本不太可能实现。设想用这样的“分子”来组装人形机器人。人体(在此是个绝佳的例子)大概有7 000万亿万亿(7×1022)个原子。把7 000万亿个原子组装在一起组成一个人形物体大概需要1万亿秒,约为3万年。所以,这绝不是一夜之间能完成的事。
实际上,我们现在的纳米技术更多的是在材料科学领域,而不是组装小型机器人。就像防晒霜里的纳米颗粒一样,我们也会使用纳米管和纳米纤维,这些材料非常强韧,是电的良导体。单原子厚的片状材料石墨烯和我们常见的笨重材料不同,它的性能绝佳。如果我们可以制造真正的纳米机器,我们就有能力完成更复杂的任务。事实上,我们很有可能需要用一台纳米机器来制造另一台纳米机器。
物理学家理查德·费曼是最早思考纳米技术的人之一,他在一次名为“底下的空间还大得很”的谈话中指出,我们可以用很小的机器来制造更小的机器,然后制造更小的机器,就这样循环下去。即使这样,我们面对这种规模的自然复制仍然需要警惕。自然界中发生的基因突变就是这种自然复制中出现问题的模型。在多次复制过程中往往会产生错误。积累的错误会导致失败,但偶尔也会产生更好的个体。如果好的性状可以遗传到下一代,那么自然选择的过程将确保优胜劣汰。以上就是简化版的进化过程。这个过程对自然界的所有生物适用,对纳米机器也适用。当机器被大量复制,并且把每个小变化延续到下一代的产品中时,产品也会进化。这又回到了我们之前说的“灰色黏质”的问题。
当然,如果有一天我们成功实现了可以自我复制的纳米机器的生态架构,那么我们肯定要编入一些保护措施以防止变异往我们不希望的方向发生,让偏离原设计的变异都自我毁灭。推想纳米机器的进化过程和相关的道德问题确实很有意思,实际上我们也许永远不用为这些事情操心,因为在这个方向上每向前迈一步都需要攻克巨大的科研难关。
已经有一些实验生产出了前景喜人的纳米机器部件。比如,可以拼装分子的纳米齿轮,像剪子一样修剪其他分子的纳米剪刀。但是,以这些为基础,制造出纳米机器的确还有很长的路要走。我们不仅要做出更精密的纳米机器,还要给它加上能源装置和计算机,让它们有再造功能。在这些部件中,我们现在只能做到生产正常大小的计算机,那些肉眼不可见的部件简直就是天方夜谭。(是的,我们有能源装置,但是电池技术不太好,体积大,且续航时间不长。)
即便我们现在有可用的技术,也可能有量级的问题。就像你不能把蜘蛛变得像人一样大,你也不能期待人体大小的机器在纳米量级也有相同的功能。不同的物理效应都会粉墨登场。当物体非常小的时候,原子内部的正负电荷间产生的电磁效应开始产生显著的影响。卡西米尔效应(量子过程)描述了真空中两片中性的金属板在距离非常小时会出现的吸引现象。在纳米量级的距离里,物质会相互吸引,而在通常情况下,这不会发生。
这些现象都有可能毁掉纳米机器,基本上每个对纳米机器的能力做出激动人心预测的人都低估了在纳米量级上操作的复杂性。事实上,很有可能我们唯一能利用的纳米机器只能基于生物原型,比如病毒和细菌。
我们已经讨论了建造机器人的不同方法,但我们内心深处依然向往那些老式的人形自动机器,不管它们到底是基于电子技术的,比如《星际迷航:下一代》里的生化人数据,还是基于生物技术的,比如《银翼杀手》(Blade Runner)里的仿生人。这到底会不会发生?我们会继续研制功能更多的类似阿西莫的展示机器人,但我个人认为我们不会在日常生活中看到人形机器人或者仿生人。
我之所以这样认为,部分原因在于“机械公敌效应”,也就是非人类的仿生人可能会导致人类恐慌;另一部分原因是,上文中描述的类似蜂巢原理的微型机器人更有可能实现。此外,道德约束可能会限制我们对仿生人的研制。撇开别的不说,我们不需要劳民伤财地制造仿生人,因为我们已经有可用的相对便宜(过程较慢)的产生人形生物的方法了,那就是生育。但现在大家都认为地球上的人口太多了,而不是不足。